Optimization of Sparse Matrix Kernels for Data Mining
نویسندگان
چکیده
Number: 193 Optimization of Sparse Matrix Kernels for Data
منابع مشابه
CAS WAVELET METHOD FOR THE NUMERICAL SOLUTION OF BOUNDARY INTEGRAL EQUATIONS WITH LOGARITHMIC SINGULAR KERNELS
In this paper, we present a computational method for solving boundary integral equations with loga-rithmic singular kernels which occur as reformulations of a boundary value problem for the Laplacian equation. Themethod is based on the use of the Galerkin method with CAS wavelets constructed on the unit interval as basis.This approach utilizes the non-uniform Gauss-Legendre quadrature rule for ...
متن کاملWhen to Cache Block Sparse Matrix Multiplication: A Statistical Learning Approach
In previous work it was found that cache blocking of sparse matrix vector multiplication yielded significant performance improvements (upto 700% on some matrix and platform combinations) however deciding when to apply the optimization is a non-trivial problem. This paper applies four different statistical learning techniques to explore this classification problem. The statistical techniques use...
متن کاملA Survey on Performance Modelling and Optimization Techniques for SpMV on GPUs
Sparse Matrix is a matrix consisting of very few non-zero entries. Large sparse matrices are often used in engineering and scientific operations. Especially sparse-matrix vector multiplication is an important operation for solving linear system and partial differential equations. However, there is a possibility that even though the matrix is partitioned and stored appropriately, the performance...
متن کاملAutomatic Generation of Sparse Tensor Kernels with Workspaces
Recent advances in compiler theory describe how to compile sparse tensor algebra. Prior work, however, does not describe how to generate efficient code that takes advantage of temporary workspaces. These are often used to hand-optimize important kernels such as sparse matrix multiplication and the matricized tensor times Khatri-Rao product. Without this capability, compilers and code generators...
متن کاملTMG: A MATLAB Toolbox for Generating Term-Document Matrices from Text Collections
A wide range of computational kernels in data mining and information retrieval from text collections involve techniques from linear algebra. These kernels typically operate on data that is presented in the form of large sparse term-document matrices (tdm). We present TMG, a research and teaching toolbox for the generation of sparse tdm's from text collections and for the incremental modificatio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2000